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Abstract

Conservation farming (CF), involving basin tillage, residue retention and crop rotation, com-

bined with biochar may help to mitigate negative impacts of conventional agriculture. In this

study, the effects of CF on the amount and quality of soil organic matter (SOM) and potential

nitrogen (N) mineralization were investigated in a maize-soya-maize rotation in an Acrisol in

Zambia. A large field was run under CF for 7 years and in the subsequent three growing sea-

sons (2015–2018), four management practices were introduced to study effects on soil

characteristics and crop yield. We tested i) a continuation of regular CF (CF-NORM) ii) CF

without residue retention (CF-NO-RES); iii) Conventional (CONV), with full tillage and

removal of residues; and iv) CF with 4 ton ha-1 pigeon pea biochar inside basins and residue

retention (CF-BC). The experiment involved the addition of fertilizer only to maize, while

soya received none. Soya yield was significantly higher in CF systems than in CONV. Maize

yields were not affected by the different management practices probably due to the ample

fertilizer addition. CF-NORM had a higher stock of soil organic carbon (SOC), higher N min-

eralization rates, more hot-water extractable carbon (HWEC; labile SOC) and particulate

organic matter (POM) inside basins compared to the surrounding soil (outside basins). Our

results suggest that the input of roots inside basins are more effective increasing SOM and

N mineralization, than the crop residues that are placed outside basins. CONV reduced both

quality and quantity of SOM and N mineralization as compared to CF inside basins. CF-BC

increased the amount of SOC as compared with CF-NORM, whereas N mineralization rate

and HWEC remained unaffected. The results suggest benefits on yield of CF and none of

biochar; larger impact of root biomass on the build-up of SOM than crop residues; and high

stability of biochar in soil.
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Introduction

Soil organic matter (SOM) is important for agricultural and ecosystem services [1, 2]. SOM

contributes to the mitigation and adaptation to climate change since it acts as a sink for CO2, a

major greenhouse gas, it helps storing plant nutrients [3] and it makes crop production more

resilient to drought conditions by promoting soil aggregation [4] and water infiltration [5, 6].

In Sub-Saharan Africa (SSA) SOM depletion is one of the major causes of soil degradation [7].

Thus, there is a need for improved soil management alternatives that may contribute to

increases in SOM.

Conservation farming (CF), a set of practices including i) minimum or no tillage ii) reten-

tion of crop residues and iii) crop rotation, has been suggested as a way to increase soil organic

C (SOC) if its three principles are strictly applied [8–11]. CF in the form of planting basins has

been promoted among small-scale farmers in countries like Zambia for more than two decades

[12] with yield benefits for farmers if combined with complementary practices such as the use

of improved crop varieties, adequate weed and pest control, among others [13, 14]. Besides,

biochar, the C-rich pyrolysis product of agricultural waste, has been suggested as a way of

sequestering C while improving soil fertility [15–18]. Soil amendment with biochar may allevi-

ate soil acidity, improve soil water-holding capacity and prevent leaching of plant nutrients

[19, 20], which all contribute to increased crop yields. Previous research in SSA showed that

biochar addition inside planting basins in CF husbandry increased maize yield after one grow-

ing season [21, 22]. Nevertheless, there are no studies conducted over a larger number of

seasons.

Most of the studies assessing the effect of CF on SOC have focused on the total amount of

organic C, whereas fractions of SOC have been overlooked. Fractionation of SOC can be used

to assess the quality of SOC, thus understanding the effect of soil management practices on the

processes of decomposition and stabilization of SOM [23]. Among the multiple fractionation

methods, particulate organic matter (POM; density lower than 1.6–2.0 g cm-3; not strongly

bound to minerals and composed mainly of partially decomposed fragments of roots and

aboveground biomass) and hot-water extractable C (HWEC at 80 ˚C; dissolved organic C with

a diameter < 0.45μm) have been shown to be sensitive to changes in soil management and can

be used to isolate labile to intermediate fractions, which are expected to be affected most by CF

practices [9, 24–26].

It has been shown that cultivation reduces the amount of POM in tropical and subtropical

regions [24] due to increased decomposition and/or reduced input of biomass. Fortunately,

biomass inputs may help restoring the initial amount of POM [27], being root biomass more

effective than aboveground biomass [28]. In addition, HWEC has been found to be a good pre-

dictor of potential mineralizable N, which can be used to assess the capacity of soil to supply N

[29] under different soil management practices [25]. To our knowledge, little research has

been conducted on the effects of the principles of CF combined with biochar addition on N

mineralization in SSA. Besides, biochar has been shown to impact SOC decomposition rates

both positively and negatively, a process known as priming effect that may last from days to

years [30, 31]. Priming effect in biochar research has been measured mainly as the changes of

CO2 efflux in incubation experiments, while measurements of N mineralization rate are scant

in spite of being another known way of determining this phenomenon [32].

The present research builds on a previous assessment of the effects of seven years of CF

using permanent planting basins (a hand-hoe based form of minimum tillage that is practiced

by smallholder farmers in arid environments) in Zambian Acrisols on SOM. The results sug-

gested an increase of SOC of about 2.9‰ yr-1 and an increase of N mineralization rates inside

basins as compared to the adjacent soil [33]. Root biomass and not residue retention was

Conservation farming with biochar. Soil organic matter and crop productivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0228717 February 6, 2020 2 / 17

Funding: The study was funded by the Norwegian

University of Life Sciences (NMBU) (https://www.

nmbu.no/en) through PhD internal financing to

Munera-Echeverri J.L and by the Faculty of

Environmental Sciences and Nature Resource

Management at NMBU (https://www.nmbu.no/en/

faculty/mina) as part of the stipend to Vegard

Martinsen and by the R&D project “Climate Smart

Agriculture in Zambia (CSAZ): Soil benefits

parameters research, conventional and

conservation agriculture” funded by the

Conservation Farming Unit (CFU) of Zambia

(https://conservationagriculture.org/). The

sponsors did not play any role in the study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0228717
https://www.nmbu.no/en
https://www.nmbu.no/en
https://www.nmbu.no/en/faculty/mina
https://www.nmbu.no/en/faculty/mina
https://conservationagriculture.org/


suggested to be the reason for the changes in the amount and quality of SOC. Further assess-

ment of the effect of alternative practices and residue retention is needed though. The present

study involved the practices: i) normal CF, ii) CF without residue retention, iii) conventional

tillage without retention of crop residue and iv) CF with biochar addition inside basins only.

The objectives were to a) measure crop yield and stover production under each treatment

in a rain-fed maize-soya-maize rotation (2.5 years), b) to investigate the amount and quality of

SOM and N mineralization rates in response to residue removal inside and outside basins

under CF, while comparing the results with the conventional management, and c) to study

SOM quality and N mineralization upon biochar addition inside planting basins.

Materials and methods

2.1 Land use history and experimental setup

The experiment was done on a private farm (CENA farms; Mount Isabel), Mkushi, Zambia

(S13˚45025.7@ E29˚03055.5@), with the permission of the owner of the land. No additional per-

missions were needed to conduct the field study. The permission for the transport of soil sam-

ples from Zambia to Norway was obtained via the University of Zambia (UNZA) and the

Norwegian University of Life Sciences. The field studies did not involve endangered or pro-

tected species.

The study was conducted on a sandy loam (Acrisol) with an average annual precipitation of

1220 mm and a mean annual temperature of 20.4 ˚C [33, 34]. Prior to the experiment, the site

had been under CF (planting basins and maize–ground nut rotation) for 7 years. For details

about soil characteristics and soil management reference is made to Martinsen et al. [33]. In

October 2015 four soil management practices were established in 24 m2 plots, randomly dis-

tributed in 4 blocks (S1 and S2 Figs) Treatments included i) Conventional (CONV): full tillage

to a depth of 10 cm and no residue retention. ii) CF Normal (CF-NORM): continuation of the

practice implemented during 7 years prior to 2015, with basins fully opened before planting

and crop residue added after harvest (viz. 4.4 ton ha-1 maize stover and 2.9 ton ha-1 soya stover

in 2016–17) iii) CF no residue (CF-NO-RES): as CF-NORM but with residue removal after

harvest iv) CF + Biochar (CF-BC): addition of 4 ton ha-1 of pigeon pea biochar inside basins

before planting in October 2015 only, while crop residues were applied as in CF-NORM. The

planting basins were dug, using a hoe, to a depth of 20 cm, in agreement with the local practice

of conservation farming; and biochar was added at a depth of 20 cm, mixed with the soil and

subsequently, covered with more soil. Most of the biochar was placed at a depth of 8 to 20 cm.

Seeds and fertilizer were mixed into the upper 8 cm of the basins. All CF plots had four rows of

six planting basins (distance 80 cm, 90 cm between rows, basins were about 40 cm x 20 cm and

20 cm deep), that were planted with either three maize plants or 8 seeds of soya beans. The

variety of maize was MRI 634. The conventionally tilled plots (CONV) had four rows with 18

(equally spaced) maize plants each, whereas for soya there were six planting stations per row at

a distance of 80 cm in which 8 seeds per station were sown, following local practice.

The experiment was done for 3 growing seasons (2015–2018). Maize was planted in 2015/

2016, soya in 2016/2017 and again maize in 2017/2018. Fertilizer was applied only to maize

with no fertilizer addition to soya. All the soil management practices received the same amount

of NPK fertilizer and urea per hectare. The fertilizer was applied differently in CF treatments

and CONV. In all CF treatments, 17.1±0.8 g of NPK (N, P2O5, K2O; 10-20-10) was applied per

basin at pre-planting, corresponding to 237 kg ha-1. Five and eight weeks after planting, top-

dressing with urea (46:0:0) was applied, corresponding to 100 kg ha-1 each time (200 kg ha-1

Urea). In the CONV treatment, the NPK fertilizer was applied at emergence along the rows of
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maize plants. Five and eight weeks after planting a topdressing with urea was applied (200 kg

ha-1). The application of N to maize crop corresponded to 116 kg N ha-1 yr-1.

2.2 Biochar

Biochar feedstock was pigeon pea (Cajanus cajan) stems, produced in a flame curtain kiln [35]

at 600 ˚C. The chemical characteristics of the biochar were as described by Munera-Echeverri

et al. [36] and include pH (10.4), Electrical Conductivity (1.4 mS cm-1), acid neutralizing

capacity (ANCpH7; 49 cmol(+)kg-1), total organic carbon (56.1%), Total N (0.69%), total H

(1.1%) and cation exchange capacity (6.6 cmol(+)kg-1).

2.3 Biomass production

Stover biomass and grain yield were measured immediately after harvest in all plots in each of

the four blocks. The number of replicates was four. The values measured in the field were cor-

rected for dry matter content. Root to shoot ratios of maize plants were measured in CF-BC,

CF-NORM and CONV before harvest (Feb.2018; 12 weeks after planting) by digging the

whole root system of 1 basin (3 plants) per plot in CF treatments and 3 neighboring plants in

CONV. Root biomass was calculated by multiplying total aboveground biomass (grain plus

stover) measured at the end of the growing season and the measured root to shoot ratio. Root

depth and width was measured in CF-NORM and CF-BC.

2.4 Soil sampling

Soil samples were taken from all plots in each of the four blocks, at two depths. Soil was sam-

pled in CF-NORM and CF-NO-RES outside and inside basins. In CONV, we sampled inside

rows of maize plants and in between rows. CF-BC was sampled inside basins only. The first

sampling campaign was carried out in May 2016 (end the growing season 2015–16, after har-

vest; CF-NORM and CF-BC) and the second in February 2018 (in the middle of the season

2017–18; all the treatments). Samples inside basins were taken by mixing one soil core of 2 cm

diameter from five different basins (i.e. one bulked sample per treatment plot). Samples out-

side basins were taken from the area in between rows of basins in the same way. Samples were

collected from 0 to 8 cm and from 8 to 20 cm depth. The samples were dried at 40 ˚C over a 7

days period before being sieved (2mm) at the Norwegian University of life Sciences (NMBU).

The sample of one of the plots in CF-BC in 2018 was lost during transport from Zambia to

Norway. In summary, the dependent soil variables in each treatment, either inside or outside

basins, had four replicates per depth each year (2016 and 2018), except for CF-BC inside basins

sampled in 2018, which had three replicates.

2.5 C and N analyses and stocks

Soil organic carbon (SOC) was analyzed using a TruSpec CHN analyzer (Leco Corporation).

Since soil pH was below 6.5 (S1 Table) total C was used as a measure of SOC. Total N was ana-

lyzed by the Dumas method [37] using a TruSpec CHN analyzer (Leco Corporation). Stocks of

organic C and N (ton ha-1) were calculated by multiplying elemental concentration (inside

and outside basins), bulk density (BD) and depth of sampling. C and N stocks in CF-BC out-

side basins was assumed to be the same as in CF-NORM. Bulk density was determined using

100 cm3-steel rings at 5 to 10 cm in the season 2016–17 inside and outside basins in each treat-

ment. The samples were transferred to plastic bags and dried at 105 ˚C at NMBU to determine

dry matter content.
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2.6 N mineralization

Nitrogen mineralization rates were determined in a 60-day incubation experiment at 20 ˚C. A

total of 8 g of dried soil was added to 50 ml polypropylene tubes and the moisture content

adjusted to 30% (v/v) by adding 1.8 ml distilled water. The lids were placed loosely on the

tubes, allowing gas exchange. Water was replenished every 12–14 days after weighing. The

tubes containing the samples at time 0 were frozen at -18 ˚C and stored until KCl extraction.

Mineral N (NH4
+ and NO3

-) was determined before and after incubation, using 20 ml 2M

KCl. Tubes were shaken horizontally during 1 hour at 200 strokes per minute and filtered

using Whatman filter (589/3). Extracts were analyzed for NH4
+ and NO3

- by Flow Injection

Analysis (FIA tar 5010). Potential N mineralization rates were calculated by subtracting the

initial amount of NH4
+ and NO3

- at time 0, from the amount determined after 60 days. Net

production of NH4
+ and NO3

- (both in g kg-1 day-1) after 60 days were summed prior to calcu-

lation of potential N mineralization rates.

2.7 Hot-water extractable C (HWEC)

The HWEC was determined as described in [25]. In brief, 5 grams of dried soil and 30ml of

deionized water were added to 50ml polypropylene tubes. The tubes were closed, shaken in

vortex-shaker for one minute and placed in a laboratory water bath during 16 hours at 80 ˚C.

Subsequently, the tubes were centrifuged at 1700 g and the supernatant was filtered using a

0.45 μm polyethersulfone filter. The samples were analyzed for dissolved organic carbon

(DOC) using a total organic analyzer (TOC-V CPN, Shimadzu).

2.8 Density fractionation

Particulate organic matter can be either free (fPOM) or occluded (oPOM) in soil aggregates.

Density fractionation was carried out following a modified method based on Leifeld & Kögel-

Knabner (2005) [27] to determine POM, which was a combination of fPOM (wet sieved and

density < 1.8 g cm-3) and oPOM (ultrasonic dispersion with 22 J ml-1,< 1.8 g cm-3) fractions.

In a pre-experiment, we found it difficult to differentiate between fPOM and oPOM as the

amount of fPOM was very small. A sodium polytungstate (Na6H2W12O40) × H2O) solution

was prepared and its density adjusted to 1.8 g cm-3. A total of 20 g dried and sieved soil

(< 2mm) was weighted into 50ml polypropylene tubes and 30 ml of sodium polytungstate was

added. The tubes were shaken gently 10 times end-over-end. Subsequently, the samples were

dispersed ultrasonically with 22 J ml-1 and centrifuged at 1700 g for 12 minutes. The superna-

tant with floating particles (fPOM and oPOM) was transferred onto a 20 μm sieve and rinsed

with distilled water until the electrical conductivity dropped to< 100 μS cm-1. The POM was

dried at 105 ˚C for 24 hours and weighed. Next, the samples were milled and analyzed for total

C and total N. The amount of POM relative to the bulk soil, the contribution of POC to SOC,

as well as contribution of POM-N (PON) to total N was calculated.

2.9 Statistics

Statistical analyzes were conducted using R software [38]. We used one-way ANOVA to deter-

mine differences in crop biomass (Table 1) and C and N stocks between treatments. Two way

ANOVA (treatment 3 levels and in vs. out 2 levels) was used to assess differences in SOC, total

N, N mineralization rate and HWEC between treatments and between inside and outside

basins (CF) or rows (CONV; Fig 1). Linear mixed effect model (Fixed factors: treatment 2 lev-

els, year 2 levels) was used to assess the effects on conservation farming with and without bio-

char on SOC, total N, N mineralization rate and HWEC (Fig 2) over time at 0 to 8 cm and at 8

Conservation farming with biochar. Soil organic matter and crop productivity
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to 20 cm separately, where block was included as random factor. The spatial autocorrelation

between repeated measurements in 2016 and 2018 was assumed constant between the different

treatment combinations. Two-way ANOVA (treatment 2 levels and in vs. out 2 levels) was

used to assess the difference in POM, POC, PON and C:N ratio of POM between CF-NORM

and CF-NO-RES inside and outside basins in each depth independently. Differences between

variables retained in the parsimonious models were analyzed by Tukey test at 0.05 significance.

Linear regression was used to assess the relationship between HWEC and potential N mineral-

ization rates.

Results

3.1 Biomass production and grain yield

Soya yield and stover (season 2016–17), were significantly smaller under CONV (2.1 tons of

grain ha-1) than under CF-NORM, CF-NO-RES and CF-BC (3.4 tons, 3.6 tons and 3.0 tons of

grain ha-1, respectively; Table 1). Maize yield and maize stover production did not show any sig-

nificant differences between treatments (i.e. seasons 2015–16 and 2017–18). Maize yields were

higher in 2015–16 (5.2 ton grain ha-1) than in the season 2017–18 (3.1 ton grain ha-1). Retention

of residue under CF-NORM corresponded to 4.4 ton ha-1 maize stover in 2015–16 and 2.9 ton

ha-1 soya stover in 2016–17. Maize root to shoot ratios were not significantly different between

treatments. The calculated root biomass was 3.2 ton ha-1 in average (Table 1). The maximum

depth and width of maize root system was 23 cm and 18.8 cm respectively (Table 1).

Table 1. Grain yield and stover production in the growing seasons 2015–16, 2016–17, 2017–18 in Conservation farming (CF) with biochar (CF-BC), normal CF

(CF-NORM), CF with no residue (CF-NO-RES) and conventional (CONV). Standard error of the mean (s.e), n = 4. For root dimension n = 12.

Growing season CF-BC CF-NORM CF-NO-RES CONV

2015–16 Maize Grain (ton ha-1) 5.0a 5.2a 6.1a 4.7a

s.e 0.4 0.6 0.4 0.4
Stover (ton ha-1) 4.9a 4.4a 5.3a 3.7a

s.e 0.3 0.1 0.7 0.4
2016–17 Soya Grain (ton ha-1) 3.0a 3.4a 3.6a 2.1b

s.e 0.2 0.3 0.2 0.3
Stover (ton ha-1) 2.5a 2.9a 3.1a 1.9b

s.e 0.3 0.3 0.2 0.2
2017–18 Maize Grain (ton ha-1) 3.1a 3.5a 3.6a 2.2a

s.e 0.2 0.3 0.3 0.5
Stover (ton ha-1) 5.7a 4.9a 5.7a 4.7a

s.e 0.4 0.1 0.5 0.5
Root:shoot 0.49a 0.38a - 0.26a

s.e 0.21 0.10 - 0.04
�Root biomass

(ton ha-1; calculated)

4.3a 3.5a - 1.9a

s.e 1.9 (1.0) - (0.5)
Root dimension Max depth (cm) 22.9 23.1 - -

s.e 0.6 0.4 - -

Max width (cm) 19.1 18.4 - -

s.e 1.1 0.8 - -

�Root biomass was estimated only in 2017–18 in maize by multiplying root to shoot ratios and total biomass (grain + stover).

https://doi.org/10.1371/journal.pone.0228717.t001
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3.2 Effect of conservation farming on SOC, SOC fractions, total N and N

mineralization

There was no effect of residue removal on SOC, HWEC, total N and mineralizable N after 3

growing seasons (Fig 1, Table 2). Under CF-NORM and CF-NO-RES, SOC, HWEC and N

mineralization rate were significantly greater inside basins as compared to outside (p<0.01 in

both cases). Yet, total N did not significantly differ between inside and outside basins (Fig 1).

Likewise, POM was not affected by residue removal (p = 0.51; Table 2). The results show larger

amounts of POM inside basins than outside basins both at 0 to 8 cm and at 8 to 20cm (p<0.01

in all cases; Table 2). The quality of the POM was not affected by residue removal, as indicated

by similar contribution of POC to SOC, PON to total N and CN ratio in POM in both treat-

ments. Instead, the results show differences in the above-mentioned parameters between

inside and outside basins (Table 2). In CONV, SOC, HWEC, total N and mineralizable N were

the same inside and outside rows of plants. Total N did not show significant differences

between the soil managements. Soil Organic C, HWEC and N mineralization rate were higher

in CF systems inside basins than in CONV inside rows (Fig 1).

3.3 Effect of biochar, time and depth application inside basins

Biochar addition inside basins in CF significantly increased the amount of SOC as compared

to CF-NORM at 8 to 20 cm depth where most of the biochar was added (Fig 2A). The amount

of C added as biochar was 2.2 ton C ha-1, while the difference in C stock inside basins in 2018

between CF-BC and either CF-NORM or CF-NO-RES corresponded to 2 ton C ha-1 (Table 3),

corresponding to a recovery of 90% of the biochar added. Total C stock per hectare in 2018

showed significant differences between CF-BC and CONV only (p<0.01; Table 3). However,

CF-BC had significantly higher C stock inside basins than both CF-NORM and CF-NO-RES

Fig 1. (a) Soil organic C, (b) total N, (c) N mineralization rate and (d) HWEC inside and outside basins under

CF-NORM and CF-NO-RES and inside and outside planting rows in CONV in 2018 at 0 to 20 cm depth. The vales are

depth weighted averages of the values from 0 to 8 cm and 8 to 20 cm. Error bars represent standard errors (n = 4).

Lower case letters indicate significant differences (p<0.05) between soil management practices inside and outside

basins (or inside and outside rows of plants under CONV).

https://doi.org/10.1371/journal.pone.0228717.g001
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(p< 0.01 in both). In 2018, concentration of total N (%) was increased upon biochar addition

as compared to CF-NORM at 8 to 20 cm only (Fig 2B). However, results showed no differences

in N stock per hectare when CF-NO-RES, CF-NORM and CF-BC were included in the analy-

sis (Table 3). Nitrogen mineralization rates and HWEC under CF-BC did not significantly dif-

fer from CF-NORM in 2016 and 2018 (Fig 2). Biochar increased amount of SOC but not its

more labile fraction, as estimated by hot water extraction (HWEC). The correlation of N min-

eralization rate and HWEC was clear and it was not affected by any of the soil regimes includ-

ing CF-BC (R2 = 0.81; Fig 3).

Discussion

4.1 Crop biomass-effect of soil management

Soya yield and stover were significantly lower in CONV than in CF systems in 2016–17

(Table 1), when no fertilizer was applied. For maize, we found no significant effect of treatment

Fig 2. (a) SOC, (b) total N, (c) N mineralization rate and (d) HWEC inside planting basins in CF-NORM and CF-BC at 0 to 8 cm and 8 to 20 cm depth in 2016 and

2018. Lower case letters denote differences between treatments in 2016 and 2018 at 0 to 8 cm. Upper case letters show differences between treatments in 2016 and 2018

at 8 to 20 cm. Error bars represent standard errors, n = 4.

https://doi.org/10.1371/journal.pone.0228717.g002
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(including biochar) on yield. Possibly, the differences in spatial planting patterns within maize

rows in CF-NORM vs CONV explained the lack of significant differences in maize biomass,

despite the benefits on soil fertility of CF-NORM. As reported by Mashingaidze et al. [39],

maize plants planted at short distances as inside basins may be hampered by competition for

nutrients, water and radiation compared with plants in CONV, which are more widely spaced.

Soya in CONV was sown in planting stations that had the same spatial arrangement as

CF-NORM.

Maize yields in our experiment were greater (Table 1) than those generally obtained by

small-scale farmers in SSA, which were estimated to be 1.4 ± 1.0 ton ha-1 for maize [40]. The

reason is likely to be the high N application rate (116 kg N ha-1) in our experiment. By contrast,

small-scale farmers in SSA use on average 17 kg NPK ha-1 [14]. Consequently, amounts of

maize and soya residues were high (4.4 and 2.9 ton ha-1 y-1, respectively). Research conducted

in SSA has suggested 3 ton ha-1 of crop residues as threshold value to reach an initial soil cover

of 30% of the land at the beginning of each growing season [41]. Often, small-scale farmers do

not manage to produce that amount of residues. The reason for higher maize yield in 2015–16

than in 2017–18 was likely due to a dry spell that affected Zambia mainly during January 2018

(S3 Fig).

Results showed no effect of soil treatment (including biochar addition) on root to shoots

ratio. Previously, Abiven et al. Abiven, Hund [42] found more developed maize roots systems

and greater yields in biochar amended plots compared to normal CF plots on the same site in

Table 2. Particulate organic matter in the bulk soil, contribution of particulate organic C (POC) to SOC, contribution of particulate organic N (PON) to total N

and CN ratio in POM in CF-NORM and CF-NO-RES inside and outside basins at 0 to 8 cm and 8 to 20 cm in 2018. Lowercase letters denote differences in POM and

quality of POM between inside and outside basins independent of the soil management treatment. Values are averages with standard errors, n = 4.

POM in bulk soil (%) POC to SOC (%) PON to Tot N (%) C:N in POM C:N in bulk soil

CF-NO-RES CF-NORM CF-NO-RES CF-NORM CF-NO-RES CF-NORM CF-NO-RES CF-NORM CF-NO-RES CF-NORM

Inside a a a b a

0–8 cm 0.82±
0.02

0.81±
0.13

30.8±0.8 33.2±
3.9

31.8±11.2 33.9±
10.4

16.0±
0.6

17.3±
0.5

15.8±
4.6

17.0±
3.4

8–20 cm 0.43±
0.03

0.44±
0.06

21.5±1.2 21.9±
2.3

17.6±5.2 15.0±
2.2

20.5±
0.4

21.4±
1.7

17.2±
5.6

14.5±
1.4

Outside b b b a a

0–8 cm 0.40±
0.03

0.44±
0.03

23.7±0.7 22.8±
2.7

19.6±3.7 13.2±
2.7

20.7±
0.8

19.7±
0.7

17.3±
3.7

11.3±
1.4

8–20 cm 0.20±
0.02

0.26±
0.02

13.9±0.5 18.3±
1.6

10.2±5.1 6.0±
2.0

30.8±
6.4

45.8±
5.7

18.9±
7.0

13.5±
2.6

https://doi.org/10.1371/journal.pone.0228717.t002

Table 3. Carbon and Nitrogen stocks per hectare in the upper 20 cm in CF-NORM, CF-NO-RES, CONV and CF-BC in 2018. C and N stocks inside basins were com-

pared between Conservation Farming (CF) systems only. In the three CF treatments, area dedicated to planting basins was 9.7% of the field whereas outside basins was

90.3%. The comparison of total C and N stock included CF systems as well as CONV. C and N stocks outside basins in CF-BC were assumed the same as in CF-NORM.

Lower case letters indicate significant differences in C and N stocks between treatments, comparing either inside, outside basins or the total C stock per hectare (n = 4).

Soil management practices

CF-BC CF-NORM CF-NO-RES CONV

C stock Inside 3.5 (0.32)a 1.5 (0.13)b 1.5 (0.03)b -

(ton C ha-1) Outside 11.2 (0.60)a 11.0 (0.48)a -

Total 14.1 (0.3)a 12.7 (0.6)ab 12.5 (0.5)ab 11.4 (0.3)b

N stock Inside 143 (17)a 100 (14)a 111 (21)a -

(kg N ha-1) Outside 976 (92)a 779 (192)a -

Total 1029(13.3)a 1076 (93)a 890 (205)a 739 (159)a

https://doi.org/10.1371/journal.pone.0228717.t003
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Zambia. However, the application of N in their Abiven, Hund [42] was only 30 kg N ha-1 and

the root to shoot ratio was 0.037 to 0.045, which is much smaller than found in our study (0.26

to 0.49, Table 1). Our values are in the range of what was reported for maize in North America

[43, 44]. Results showed estimates of maize root biomass that varied from 1.9 ton ha-1 in

CONV to 3.5 ton ha-1 in CF-BC (Table 1).

4.2 Effect of permanent planting basins, tillage and residue retention on

SOC, C fractions, total N and N mineralization

The experimental field at Mkushi had been managed with permanent planting basins and resi-

due retention between rows of basins for 7 years prior the establishment of the treatments. At

the onset of the present study SOC, HWEC and N mineralization rate were therefore higher

inside permanent planting basins as compared to outside [33]. Upon full tillage in CONV

management, SOC, N mineralization rate and HWEC decreased to the same levels observed

for the area outside basins in CF (Fig 1). This could be explained by the redistribution of soil

upon conventional tillage that diluted the HWEC that was gained inside basins. Other studies

have shown sharp long-term decrease of HWEC and other labile SOC fractions upon full till-

age has been reported in other tropical, subtropical as well as temperate soils mainly in the

upper 5 cm [24, 45]. HWEC and N mineralization were highly correlated (Fig 3), therefore, N

mineralization in CONV was also lower than in CF inside basins (Fig 1). This suggests that it

takes few seasons of conventional tillage to undo the long-term benefits of conservation faming

on soil C and N mineralization.

Residue removal is the common practice in Sub-Saharan Africa since there are competing

uses such as animal feed or fuel [46].The results suggests no effect of residue removal after

nearly three growing seasons on amount and quality of SOM (Fig 1, Table 2). Previous

research has suggested limited effect of crop residues on SOC increments in soils in South

Africa and Kenya in experiments conducted over longer periods of time than in the present

Fig 3. N mineralization rates and hot-water extractable C. Relationship between HWEC and potential N

mineralization rates in CF-BC, CF-NORM, CF-NO-RES and CONV in the sampling campaigns of 2016 and 2018

[R2 = 0.82; N min rate (μg-N kg soil-1d-1) ~ 0.9622 x HWEC (mg C kg soil-1)– 22.359].

https://doi.org/10.1371/journal.pone.0228717.g003
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experiment [47, 48]. This may be due to high decomposition rates of crop residues [49]. How-

ever, residue losses due to termite activity, which increases with increasing residues [50], or

transport by wind and water may also have contributed to the lack of effect of residues on SOC

and its particulate and soluble fractions. The fact that residues do not have an effect on either

SOM or POM (< 2 mm) does not imply that they do not provide other benefits such as soil

moisture retention and weed control if they are kept as mulch [51].

Amount of SOC, HWEC and N mineralization inside basins were greater than outside (Fig

1; Table 2). The accumulation of root-derived biomass inside basins may explain this pattern

as suggested by Martinsen et al. [33]. Inside basins (10% of the area), about 3.5 ton ha-1 of root

biomass in CF-NORM (Table 1) was concentrated and incorporated into the soil, while out-

side basins about 4.5 ton ha-1 (in the case of maize) of crop residues was distributed over a 10

times larger area and placed on soil surface. Previous research has shown that root biomass is

retained as SOM more efficiently than shoot biomass [52]. Often this has been attributed to

smaller decomposability of roots compared to shoots [44, 52]. The observation that POM was

higher inside basin than outside at both 0 to 8 am and 8 to 20 cm also favors the idea of root

carbon retention, since crop residue biomass is applied at the surface while root biomass can

penetrate deeper (Table 2).

Our results indicate no further increase of SOC in conservation farming inside basins after

seven years Martinsen, Munera-Echeverri (33). This may suggest that more time is needed to

detect significant increases in SOC. Also, the rotation maize-groundnuts (before the 7th year)

could be more effective increasing SOC than maize-soya due to a higher root biomass derived

from the larger N fixation capacity of groundnuts vs soya In a rotation with rice, groundnut

was found to fix more N than soybean (150 to 200 kg N ha-1 vs 108 to 150 kg N ha-1, respec-

tively) and to increase rice biomass and grain yield [53]. An important amount of N (from 100

to 130 kg N ha-1) has been measured in groundnut stover [54], which may increase maize yield

if returned to soil [54, 55], as it is commonly done in Zambia.

4.3 Effect of biochar on amount and quality of SOC over time and depth

CF-BC significantly increased SOC and C stocks inside basins as compared to CF-NORM and

CF-NO-RES (Fig 2; Table 3). In addition, C stock per hectare in CF-BC was significantly

higher than in CONV (Table 3). The reason for not finding significant differences between in

C stocks per hectare between CF-BC and CF-NORM may be attributed to the fact that biochar

was added only to about 10% of the land and most of the C in the field was found outside

basins (Table 3). C stocks in the present study were low as compared to the values reported by

Martinsen et al. [56] for other soils in the Eastern and Central provinces in Zambia in conven-

tional and CF fields (28 to 45 ton C ha-1 vs. about 12.7 ton C ha-1). The high recovery of bio-

char (90%) 2.5 years after addition suggests high stability of biochar in agreement with

Kuzyakov et al. Kuzyakov, Bogomolova [57], as well as limited lateral BC transport, i.e. floating

followed by erosion. Lateral BC transport was observed to be up to 30–40% in a similar soil in

Zambia [34]. Vertical BC transport was observed to be limited to 1–2 cm per year, and thus

vertical transport to below 20 cm depth would not be expected. Despite larger SOC in CF-BC,

HWEC was unaffected by biochar addition (Fig 2). HWEC decreased with depth with and

without biochar. HWEC has been found to decrease with depth in uncultivated, agricultural

and forest soils [58, 59]. Likewise, CF-BC did not affect N mineralization rate and conse-

quently, we did not find evidence for positive or negative priming effect of biochar on SOM

decomposition.

The net N mineralization rate increased with about 96 μg-N kg-1d-1 when HWEC increased

by 100 mg kg-1 (Fig 3). HWEC was about 2.3% of the total SOC in CF-BC, 4.0% in CF-NORM,

Conservation farming with biochar. Soil organic matter and crop productivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0228717 February 6, 2020 11 / 17

https://doi.org/10.1371/journal.pone.0228717


and 3.4% in CONV. The decrease of HWEC from 2016 to 2018 in CF-NORM (Fig 2) may be

partially explained by the differences in maize root C inputs throughout the growing season,

since sampling in 2016 was done at the end of the season (maximum amount of C inputs)

whereas in 2018 it was done in the middle. In addition, maize biomass in the season 2017–18

decreased as compared to 2015–16, probably due to water-stress. Fluctuations in HWEC

across seasons has been reported in pine forest in Korea and this was linked to changes in the

amount of extractable carbohydrates [59]. Soluble carbohydrates have been found to constitute

about 79% of the root exudates of maize plants [60]. In addition, soil pH inside basins

decreased during the experiment from 6.3±0.2 [33] to 4.5 (with and without biochar) due to

no continuation of liming. This could also explain the decrease in HWEC since solubility of

SOM increases at increasing pH [61]. The decrease in HWEC from 2016 to 2018 can explain

the decrease in N mineralization rate since DOM is an important substrate for microbial activ-

ity [62].

Conclusions

Soya shows increase yields under conservation farming as compared to conventional farming.

Maize yield does not show response to conservation or conventional farming, due to the differ-

ence in planting arrangements and/or the addition of the ample addition of fertilizer when

maize was planted. Soil organic carbon, particulate organic matter, and hot-water extractable

carbon were larger inside basins than outside basins in conservation farming due to the con-

tinuous allocation of root biomass inside basins. Nitrogen mineralization was enhanced inside

basins due to the increase of labile C. After conventional tillage of conservation farming plots,

soil organic carbon, hot-water extractable carbon, and mineralizable nitrogen inside basins

decrease. Residue removal does not have a significant effect on crop yield, soil organic carbon,

hot-water extractable carbon, total nitrogen, nitrogen mineralization rates, and particulate

organic matter, which agrees with previous studies. The addition of pigeon pea biochar to

planting basins under conservation farming is effective in increasing amounts of soil organic

carbon as compared to either the normal practice of conservation farming or the conventional

practice. However, biochar does not affect hot-water extractable carbon, nitrogen mineraliza-

tion rate, and crop biomass.

Supporting information

S1 Fig. Soil regimes: a) CF-NORM: residue retention, permanent basins, b) CF-NO-RES: no

crop residues without residue retention, c) CF-BC: addition of pigeon pea biochar inside

basins and d) CONV: full tillage at a depth of 20 cm and no residue retention.

(TIF)

S2 Fig. a) Experimental setup. The four soil regimes were randomly distributed in 4 blocks.

Each plot was about 20 m2 and consisted of 4 rows of six basins in all the Conservation Farm-

ing (CF) treatments and 4 rows of plants in conventional (CONV) plots. b) CF plots. Each row

consisted of 6 planting basins with 3 plants of maize. c) CONV plots. Each row had 18 plants.

(TIF)

S3 Fig. Precipitation from October 2017 to October 2018 recorded in the weather station

of the experimental field. Precipitation from November 2017 to January 2018 was unusually

low. The effect of the dry-spell on Zambia’s maize harvest was mentioned in the press: https://

www.bloomberg.com/news/articles/2018-05-04/dry-spell-slashes-zambian-corn-production-

by-34-in-2017-18

(TIFF)
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S1 File. Excel file with the results of the density fractionation of soil organic matter. In the

sheet ALL_DATA_WP. The columns “Amount POM (percent)”, “C_in POM”, “N_in POM”

and “CN_POM” correspond to the values shown in Table 2.

(XLSX)

S2 File. Excel file with the biomass data. The soya biomass is found in the sheet “ORG-Soya”

and maize biomass in 2016 and 2018 is found in the sheet “ORG-Maize”.

(XLSX)

S3 File. Excel file with the carbon and nitrogen stocks per hectare inside and outside basins

in CF-BC, CF-NORM, CF-NO-RES and CONV.

(XLSX)

S4 File. Soil carbon and nitrogen data collected in 2016 and 2018 under CF-BC,

CF-NORM, CF-NO-RES and CONV. The data include nitrogen mineralization rates after 60

days of incubation and hot-water extractable C.

(XLSX)

S1 Table. Soil pH inside and outside basins in 2016 and 2018.

(DOCX)
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